
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 192
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

An Comparative Study on various Java
Compiler Optimization Techniques

R Sathish kumar[1] ,D.Ranjani [2]

Assistant Professor ,Department of Electrical and Electronics Engineering ,Sri Krishna College of Technology

Assistant Professor ,Department of Information Technology,Sri Krishna College of Technology

Abstract: Compilers can be designed to provide code optimization. Users should only focus on optimizations not provided by the
compiler such as choosing a faster and/or less memory intensive algorithm. A Code optimizer sits between the front end and the
code generator. Works with intermediate code Can do control flow analysis.Can do data flow analysis.Does transformations to
improve the intermediate code. Optimizations provided by a compiler includes Inlining small functions ,Code hoisting ,Dead store
elimination,Eliminating common sub-expressions ,Loop unrolling,Loop optimizations: Code motion, Induction variable elimination,
and Reduction in strength.This paper deals with the Comparative Study on various Compiler Optimization Techniques.

1. INTRODUCTION

Inlining small functions Repeatedly
inserting the function code instead of calling it,
saves the calling overhead and enable further
optimizations. Inlining large functions will make
the executable too large.Code hoisting Moving
computations outside loops Saves computing
time.Code hoistingIn the following example (2.0 *
PI) is an invariant expression there is no reason to
recompute it 100 times.

DO I = 1, 100

ARRAY(I) = 2.0 * PI * I

ENDDO

By introducing a temporary variable 't' it can be
transformed to:

t = 2.0 * PI

DO I = 1, 100

ARRAY(I) = t * I

END DO

Dead store elimination -If the compiler detects
variables that are never used, it may safely ignore
many of the operations that compute their values.
Eliminating common sub-
expressions.Optimization compilers are able to
perform quite well:

 X = A * LOG(Y) +
(LOG(Y) ** 2)

Introduce an explicit temporary variable t:

 t = LOG(Y)

 X = A * t + (t ** 2)

Saves one 'heavy' function call, by an elimination
of the common sub-expression LOG(Y), the
exponentiation now is:

 X = (A + t) * t

Loop unrolling-The loop exit checks cost CPU
time.Loop unrolling tries to get rid of the checks
completely or to reduce the number of checks.If
you know a loop is only performed a certain
number of times, or if you know the number of
times it will be repeated is a multiple of a constant
you can unroll this loop.

Loop unrolling

Example:

 // old loop

 for(int i=0; i<3; i++) {

 color_map[n+i] = i;

 }

 // unrolled version

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 193
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 int i = 0;

 colormap[n+i] = i;

 i++;

 colormap[n+i] = i;

 i++;

 colormap[n+i] = i;

Code Motion -Any code inside a loop that always
computes the same value can be moved before the
loop.

Example:

 while (i <= limit-2)

 do {loop code}

where the loop code doesn't change the limit
variable. The subtraction, limit-2, will be inside the
loop. Code motion would substitute:

 t = limit-2;

 while (i <= t)

 do {loop code}

Compilers can provide some code optimization.
Programmers do have to worry about such
optimizations.Program definition must be
preserved.

2. LITERATURE SURVEY

2.1 Java Performance Optimization
PMD

PMD scans Java source code and looks for
potential problems like Possible bugs – empty
try/catch/finally/switch statements,Dead code –
unused local variables, parameters and private
methods.Suboptimal code – wasteful
String/StringBuffer usage. Overcomplicated
expressions – unnecessary if statements, for loops
that could be while loops.Duplicate code –
copied/pasted code means copied/pasted bugs

PMD is integrated with JDeveloper, Eclipse, JEdit,
JBuilder, BlueJ, CodeGuide, NetBeans/Sun Java

Studio Enterprise/Creator, IntelliJ IDEA, TextPad,
Maven, Ant, Gel, JCreator, and Emacs.

FindBug

FindBugs, a program which uses static analysis to
look for bugs in Java code.

 Clover

Measures statement, method, and branch coverage
and has XML, HTML, and GUI reporting. and
comprehensive plug-ins for major IDEs.Improve
Test Quality Increase Testing Productivity.Keep
Team on TrackFully integrated plugins for
NetBeans, Eclipse , IntelliJ IDEA, JBuilder and
JDeveloper. These plugins allow you to measure
and inspect coverage results without leaving the
IDE.
Seamless Integration with projects using Apache
Ant and Maven. * Easy integration into legacy
build systems with command line interface and
API.Fast, accurate, configurable, detailed coverage
reporting of Method, Statement, and Branch
coverage.
Rich reporting in HTML, PDF, XML or a Swing
GUI
Precise control over the coverage gathering with
source-levelfiltering.Historical charting of code
coverage and other metrics.Fully compatible with
JUnit 3.x & 4.x, TestNG, JTiger and other testing
frameworks. Can also be used with manual,
functional or integration testing.

Macker

Macker is a build-time architectural rule checking
utility for Java developers. It’s meant to model the
architectural ideals programmers always dream up
for their projects, and then break — it helps keep
code clean and consistent. You can tailor a rules
file to suit a specific project’s structure, or write
some general “good practice” rules for your code.
Macker doesn’t try to shove anybody else’s rules
down your throat; it’s flexible, and writing a rules
file is part of the development process for each
unique project.

EMMA

Reports on class, method, basic block, and line
coverage (text, HTML, and XML).EMMA can

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 194
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

instrument classes for coverage either offline
(before they are loaded) or on the fly (using an
instrumenting application classloader).Supported
coverage types: class, method, line, basic block.
EMMA can detect when a single source code line is
covered only partially.Coverage stats are
aggregated at method, class, package, and “all
classes” levels.Output report types: plain text,
HTML, XML. All report types support drill-down,
to a user-controlled detail depth. The HTML report
supports source code linking.Output reports can
highlight items with coverage levels below user-
provided thresholds.Coverage data obtained in
different instrumentation or test runs can be
merged together.EMMA does not require access to
the source code and degrades gracefully with
decreasing amount of debug information available
in the input classes.EMMA can instrument
individial .class files or entire .jars (in place, if
desired). Efficient coverage subset filtering is
possible, too.Makefile and ANT build integration
are supported on equal footing.EMMA is quite
fast: the runtime overhead of added
instrumentation is small (5-20%) and the bytecode
instrumentor itself is very fast (mostly limited by
file I/O speed). Memory overhead is a few hundred
bytes per Java class.EMMA is 100% pure Java, has
no external library dependencies, and works in any
Java 2 JVM (even 1.2.x).

XRadar

 The XRadar is an open extensible code
report tool currently supporting all Java based
systems. The batch-processing framework
produces HTML/SVG reports of the systems
current state and the development over time – all
presented in sexy tables and graphs.The XRadar
gives measurements on standard software metrics
such as package metrics and dependencies, code
size and complexity, code duplications, coding
violations and code-style violations.

Hammurapi
 Hammurapi is a tool for execution of
automated inspection of Java program code.
Following the example of 282 rules of
Hammurabi’s code, we are offered over 120 Java
classes, the so-called inspectors, which can, at three
levels (source code, packages, repository of Java

files), state whether the analysed source code
contains violations of commonly accepted
standards of coding.

 Relief
 Relief is a design tool providing a new look
on Java projects. Relying on our ability to deal with
real objects by examining their shape, size or
relative place in space it gives a “physical” view on
java packages, types and fields and their
relationships, making them easier to handle.

 Hudson

 Hudson is a continuous integration (CI) tool
written in Java, which runs in a servlet container,
such as Apache Tomcat or the GlassFish
application server. It supports SCM tools including
CVS, Subversion, Git and Clearcase and can
execute Apache Ant and Apache Maven based
projects, as well as arbitrary shell scripts and
Windows batch commands.

Cobertura

 Cobertura is a free Java tool that calculates
the percentage of code accessed by tests. It can be
used to identify which parts of your Java program
are lacking test coverage. It is based on jcoverage.

 SonarSource

 Sonar is an open platform to manage code
quality. As such, it covers the 7 axes of code
quality:Architecture & Design, Duplications, Unit
Tests, Complexity, Potential bugs, Coding rules,
Comments.

3. CONCLUSION

Thus the paper depicts the comparative study on
various java compiler optimization Techniques and
the java tools for implementing it.

REFERENCES

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 195
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

[1] https://dzone.com/articles/java-tools-source-
code

[2] https://opensource.com/life/16/8/5-great-tricks-
java-performance-optimization

[3] https://www.tutorialspoint.com/compiler_desig
n/compiler_design_code_optimization.htm

[4] http://programming4.us/desktop/462.aspx

[5] https://pdfs.semanticscholar.org/6ce2/e99865863
ad262c610b9acb626f4ad24650e.pdf

IJSER

http://www.ijser.org/
https://dzone.com/articles/java-tools-source-code
https://dzone.com/articles/java-tools-source-code
https://opensource.com/life/16/8/5-great-tricks-java-performance-optimization
https://opensource.com/life/16/8/5-great-tricks-java-performance-optimization
https://www.tutorialspoint.com/compiler_design/compiler_design_code_optimization.htm
https://www.tutorialspoint.com/compiler_design/compiler_design_code_optimization.htm
https://www.tutorialspoint.com/compiler_design/compiler_design_code_optimization.htm
http://programming4.us/desktop/462.aspx
https://pdfs.semanticscholar.org/6ce2/e99865863ad262c610b9acb626f4ad24650e.pdf
https://pdfs.semanticscholar.org/6ce2/e99865863ad262c610b9acb626f4ad24650e.pdf
https://pdfs.semanticscholar.org/6ce2/e99865863ad262c610b9acb626f4ad24650e.pdf

	2.1 Java Performance Optimization

